## **Optimization**

## **Homework 3 Solutions**

1. Minimize 
$$-2x_1-x_2$$

Subject to 
$$x_1 + x_3 = 2$$
  
 $x_1 + x_2 + x_4 = 3$ 

$$x_1 + 2x_2 + x_5 = 5$$

$$x_1 + 2x_2 + x_5 - 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

2.

$$\begin{bmatrix} 2 & -1 & 2 & -1 & 3 \\ 1 & 2 & 3 & 1 & 0 \\ 1 & 0 & -2 & 0 & -5 \end{bmatrix} [x_1, x_2, x_3, x_4, x_5]^T = \begin{bmatrix} 14 \\ 5 \\ -10 \end{bmatrix}.$$

The total number of possible basic solution is at most 10.

Case1: 
$$x_1=x_2=0 \rightarrow x=[0,0,\frac{65}{19},\frac{-100}{19},\frac{12}{19}]^T$$

Case2: 
$$x_1=x_3=0 \rightarrow x=[0,13,0,-21,2]^T$$

Case3: 
$$x_1 = x_4 = 0 \rightarrow x = [0, -\frac{100}{23}, \frac{105}{23}, 0, \frac{4}{23}]^T$$

Case4: 
$$x_1=x_5=0 \rightarrow x=[0,-6,5,2,0]^T$$

Case5: 
$$x_3 = x_2 = 0 \rightarrow x = \left[\frac{65}{18}, 0, 0, \frac{25}{18}, \frac{49}{18}\right]^T$$

Case6: 
$$x_4 = x_2 = 0 \rightarrow x = \left[\frac{20}{7}, 0, \frac{5}{7}, 0, \frac{16}{7}\right]^T$$

Case7: 
$$x_5 = x_2 = 0 \rightarrow x = [-\frac{12}{11}, 0, \frac{49}{11}, -\frac{80}{11}, 0]^T$$

Case8: 
$$x_3 = x_4 = 0 \rightarrow x = \left[\frac{105}{31}, \frac{25}{31}, 0, 0, \frac{83}{31}\right]^T$$

Case9: 
$$x_3=x_5=0 \rightarrow x=[-10,49,0,-83,0]^T$$

Case10: 
$$x_4=x_5=0 \rightarrow x=[-\frac{4}{17}, \frac{80}{17}, \frac{83}{17}, 0, 0]^T$$

3.

(a) 
$$A = \begin{bmatrix} 3 & 1 & 0 & 1 \\ 6 & 2 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, c = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$

(b) 
$$\begin{bmatrix} 3 & 1 & 0 & 1 & 4 \\ 3 & 1 & 1 & 0 & 1 \\ 5 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(c) 
$$x=[0,0,1,4]^T$$
  
objective value  $c^Tx = -1$ 

(d) 
$$[r_1,r_2,r_3,r_4]=[5,0,0,0]$$

- (e) Yes, because no reduced cost coefficient is negative.
- (f) According to Proposition 16.1, artificial problem has optimal feasible solution, so this problem has basic feasible solution.

(g) 
$$\begin{bmatrix} 0 & 0 & -1 & 1 & 3 \\ 1 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ 2 & -1 & -1 & 0 & 0 \end{bmatrix}$$

4. Minimize 
$$-x_1-x_2-3x_3$$
  
Subject to  $x_1+x_3=1$   
 $x_2+x_3=2$   
 $x_1, x_2, x_3 \ge 0$ 

Hence,  $x=[0,1,1]^T$  is optimal basic feasible solution, objective function value= 4.

5. Minimize 
$$-2x_1 - x_2$$
  
Subject to  $x_1 + x_3 = 5$   
 $x_2 + x_4 = 7$   
 $x_1 + x_2 + x_5 = 9$   
 $x_1, x_2, x_3, x_4, x_5 \ge 0$ 

$$r_4 = 0 - [1,1,-1][0,-1,-2] = -1 < 0$$
  $r_3 = 0 - [1,-1,1][0,-1,-2] = 1 > 0$   
 $r_5 = 0 - [-1,0,1][0,-1,-2]^T = 2 > 0$   $r_5 = 0 - [-1,1,0][0,-1,-2]^T = 1 > 0$ 

Hence,  $x=[5,4,0,3,0]^T$  is optimal basic feasible solution, objective function value= 14.

- **6.** If all  $y_{iq} < 0$ , then each value in the  $vector[y_{10} \epsilon y_{1q}, y_{20} \epsilon y_{2q}, ..., y_{m0} \epsilon y_{mq}, 0, ... \epsilon, ... 0]^T$  will increase as  $\epsilon$  is increased, hence it will make this problem is unbounded.
- 7. Minimize  $4x_1+3x_2$  Minimize  $11\lambda_1+8\lambda_2+7\lambda_3$  Subject b  $5x_1+x_2\geq 11$  Dual  $2x_1+x_2\geq 8$   $x_1+2x_2\geq 7$   $x_1,x_2\geq 0$

1 1 2 0 1 3 
$$\Rightarrow$$
 0  $\frac{3}{5}$   $\frac{9}{5}$   $-\frac{1}{5}$  1  $\frac{11}{5}$ 

$$c^{T}$$
 -11 -8 -7 0 0 0  $0 - \frac{18}{5} - \frac{24}{5} = \frac{11}{5} = 0 = \frac{44}{5}$ 

$$0 \quad \frac{1}{3} \quad 1 \quad -\frac{1}{9} \quad \frac{5}{9} \quad \frac{11}{9} \implies -1 \quad 0 \quad 1 \quad -\frac{1}{3} \quad \frac{2}{3} \quad \frac{2}{3}$$

$$c^{T}$$
 0 -10 0  $\frac{25}{3}$   $\frac{40}{3}$   $\frac{220}{9}$  6 0 0 3 2 18

 $\lambda = [0, \frac{5}{3}, \frac{2}{3}, 0, 0]^T$  is optimal solution.

## 8.

- (a). Minimize 0 Subject to  $A^T \lambda \ge c^T$  $\lambda \ge 0$
- (b). From dual problem, minimum is zero. Because the maximum of primal problem must be equal to the minimum of dual problem. The maximum of primal problem is zero as well.
- (c). From the primal problem, the constraint is bounded which the condition is that x=0. But from the dual problem, the constraint also must be bounded which the condition is that A must be full rank.